Colour compound lenses for a portable fluorescence microscope

2019 
In this article, we demonstrated a handheld smartphone fluorescence microscope (HSFM) that integrates dual-functional polymer lenses with a smartphone. The HSFM consists of a smartphone, a field-portable illumination source, and a dual-functional polymer lens that performs both optical imaging and filtering. Therefore, compared with the existing smartphone fluorescence microscope, the HSFM does not need any additional optical filters. Although fluorescence imaging has traditionally played an indispensable role in biomedical and clinical applications due to its high specificity and sensitivity for detecting cells, proteins, DNAs/RNAs, etc., the bulky elements of conventional fluorescence microscopes make them inconvenient for use in point-of-care diagnosis. The HSFM demonstrated in this article solves this problem by providing a multifunctional, miniature, small-form-factor fluorescence module. This multifunctional fluorescence module can be seamlessly attached to any smartphone camera for both bright-field and fluorescence imaging at cellular-scale resolutions without the use of additional bulky lenses/filters; in fact, the HSFM achieves magnification and light filtration using a single lens. Cell and tissue observation, cell counting, plasmid transfection evaluation, and superoxide production analysis were performed using this device. Notably, this lens system has the unique capability of functioning with numerous smartphones, irrespective of the smartphone model and the camera technology housed within each device. As such, this HSFM has the potential to pave the way for real-time point-of-care diagnosis and opens up countless possibilities for personalized medicine. A method of turning a smartphone into a fluorescence microscope, developed by researchers in the US and China, enables complex biomedical analyses to be performed rapidly and inexpensively. Conventional fluorescence microscopes are vital for detecting specific cell types and proteins, but are bulky and inconvenient for point-of-care diagnoses. Tony Jun Huang at Duke University, Dawei Zhang at USST and co-workers used liquid polymers to create miniature lenses comprising two droplets, one inside the other, dyed with colored solvents. The lenses, which are compatible with several different smartphone cameras, allowed the researchers not only to observe and count cells, but also to monitor the expression of fluorescently-tagged genes, and to distinguish between normal tissue and tumors. This ingenious use of easily-accessible and affordable smartphone technology will lead to better on-site personalized medicine, especially for developing countries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    67
    Citations
    NaN
    KQI
    []