Activator protein-1 signalling pathway and apoptosis are modulated by poly(ADP-ribose) polymerase-1 in experimental colitis

2004 
SUMMARY Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in the nucleus of eukaryotic cells and has been implicated in intestinal barrier dysfunction during inflammatory bowel diseases. In this study we investigated whether PARP-1 may regulate the inflammatory response of experimental colitis at the level of signal transduction mechanisms. Mice genetically deficient of PARP-1 (PARP-1 –/– ) and wild-type littermates were subjected to rectal instillation of trinitrobenzene sulphonic acid (TNBS). Signs of inflammation were monitored for 14 days. In wild-type mice, TNBS treatment resulted in colonic ulceration and marked apoptosis, which was associated with decreased colon content of the antiapoptotic protein Bcl-2, whereas the proapoptotic Bax was unchanged. Elevated levels of plasma nitrate/nitrite, metabolites of nitric oxide (NO), were also found. These inflammatory events were associated with activation of c-Jun-NH2 terminal kinase (JNK), phosphorylation of c-Jun and activation of the nuclear transcription factor activator protein-1 (AP-1) in the colon. In contrast, PARP-1 –/– mice exhibited a significant reduction of colon damage and apoptosis, which was associated with increased colonic expression of Bcl-2 and lower levels of plasma nitrate/nitrite when compared to wild-type mice. Amelioration of colon damage was associated with a significant reduction of the activation of JNK and reduction of the DNA binding of AP-1. The data indicate that PARP-1 exerts a pathological role in colitis possibly by regulating the early stress-related transcriptional response through a positive modulation of the AP-1 and JNK pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    55
    Citations
    NaN
    KQI
    []