Recovery and Community Succession of the Zostera marina Rhizobiome After Transplantation

2020 
Seagrasses can form mutualisms with their microbiomes that facilitate the exchange of energy sources, nutrients, and hormones, and ultimately impact plant stress resistance. Little is known about community succession within the belowground seagrass microbiome after disturbance and its potential role in the plant9s recovery after transplantation. We transplanted Zostera marina shoots with and without an intact rhizosphere and cultivated plants for four weeks while characterizing microbiome recovery and effects on plant traits. Rhizosphere and root microbiomes were compositionally distinct, likely representing discrete microbial niches. Furthermore, microbiomes of washed transplants were initially different from those of sod transplants, and recovered to resemble an undisturbed state within fourteen days. Conspicuously, changes in microbial communities of washed transplants corresponded with changes in rhizosphere sediment mass and root biomass, highlighting the strength and responsive nature of the relationship between plants, their microbiome, and the environment. Potential mutualistic microbes that were enriched over time include those that function in the cycling and turnover of sulfur, nitrogen, and plant-derived carbon in the rhizosphere environment. These findings highlight the importance and resiliency of the seagrass microbiome after disturbance. Consideration of the microbiome will have meaningful implications on habitat restoration practices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    0
    Citations
    NaN
    KQI
    []