Cluster radioactivity with effects of deformations and orientations of nuclei included

2009 
Based on the preformed cluster model (PCM) of Gupta and collaborators, we have extended our recent study on ground-state cluster decays to parent nuclei resulting in daughters other than spherical {sup 208}Pb, i.e., to deformed daughters, and the very new cases of {sup 14}C and {sup 15}N decays of {sup 223}Ac, and {sup 34}Si decay of {sup 238}U, taking nuclei as spherical, quadrupole deformed ({beta}{sub 2}) alone, and with higher multipole deformations up to hexadecapole ({beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}) together with the 'optimum' orientations of cold decay process. Except for {sup 14}C decays of {sup 221}Fr, {sup 221-224,226}Ra, and {sup 225}Ac where higher multipole deformations up to {beta}{sub 4} are found essential, the quadrupole deformation {beta}{sub 2} alone is found good enough to fit the experimental data. Because the PCM treats the cluster-decay process as the tunneling of a preformed cluster, the deformations and orientations of nuclei modify both the preformation probability P{sub 0} and tunneling probability P, and hence the decay half-life, considerably.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    33
    Citations
    NaN
    KQI
    []