Identification of the cryptic HLA-I immunopeptidome.

2020 
The success of cancer immunotherapy relies on the ability of cytotoxic T cells to specifically recognize and eliminate tumor cells based on peptides presented by HLA-I. Although the peptide epitopes that elicit the corresponding immune response often remain unidentified, it is generally assumed that neoantigens, due to tumor-specific mutations, are the most common targets. Here, we used a mass spectrometric approach to show an underappreciated class of epitopes that accounts for up to 15% of HLA-I peptides for certain HLA alleles in various tumors and patients. These peptides were translated from cryptic open reading frames in supposedly non-coding regions in the genome and were mostly unidentifiable with conventional computational analyses of mass spectrometry (MS) data. Our approach, Peptide-PRISM, identified thousands of such cryptic peptides in tumor immunopeptidomes. About 20% of these HLA-I peptides represented the C-terminus of the corresponding translation product, suggesting frequent proteasome-independent processing. Our data also revealed HLA-I allele-dependent presentation of cryptic peptides, with HLA-A*03 and HLA-A*11 presenting the highest percentage of cryptic peptides. Our analyses refute the reported frequent presentation of HLA peptides generated by proteasome-catalyzed peptide splicing (PCPS). Thus, Peptide-PRISM represents an important step towards comprehensive identification of HLA-I immunopeptidomes and reveals cryptic peptides as an abundant class of epitopes with potential relevance for novel immunotherapeutic approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    24
    Citations
    NaN
    KQI
    []