Using simulations to evaluate reconstructions of sea lion diet from scat

2006 
Models used to describe pinniped diet can provide very different composition estimates. Occurrence indices as well as biomass reconstruction models (which use estimates of the number and sizes of prey consumed) are commonly used and increasingly utilize a variety of fish hard remains (bones) found in scats. However, the importance of any single fish can be overestimated if its bones are deposited in a succession of scats assumed to be from different fish. Similarly, the importance of a species will be underestimated relative to other species if the bones of one species are more fragile and are completely digested or if bones from different fish of the same species are contained in a single scat and assumed to be from a single fish. Species differences in the proportion of fish bones that survive digestion can be assessed from captive feeding studies where the number and species of prey consumed is known. Numerical correction factors can be calculated to take into account the levels of complete digestion. We performed computer simulations using data from captive feeding studies to investigate levels and sources of error in reconstructing simulated mixed species diets. Our simulations used different combinations of hard remains, were conducted both with and Sea Lions of the World 205 Alaska Sea Grant College Program • AK-SG-06-01, 2006
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    10
    Citations
    NaN
    KQI
    []