Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films

2017 
We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core–hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of com...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    60
    Citations
    NaN
    KQI
    []