Degree of chemical nonequilibrium in central Au–Au collisions at RHIC energies

2015 
In this paper, we investigate the difference between hadron resonance gas (HRG) calculations for chemical freeze-out parameters at fully and partly chemical equilibria. To this end, the results are compared with the particle ratios measured in central Au–Au collisions at a wide range of nucleon–nucleon center-of-mass energies, as offered by the STAR experiment. We restrict the discussion to STAR, because of large statistics and overall homogeneity of STAR measurements (one detector) against previous experiments. We find that the matter produced at these energies is likely in fully chemical equilibria, which is consistent with recent lattice quantum chromodynamics (QCD) results. The possible improvements by partial chemical equilibria (γS ≠ 1) are very limited. We also discuss these results with the ones deduced from ϕ/π- and Ω-/π- ratios. These hadron ratios are sensitive to the degree of chemical equilibrium. Accordingly, the conclusion that the matter produced reaches fully chemical equilibria in central Au–Au at relativistic heavy-ion collider (RHIC) energies is confirmed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    23
    Citations
    NaN
    KQI
    []