Semi-Huber quadratic function and comparative study of some MRFs for Bayesian image restoration

2013 
The present work introduces an alternative method to deal with digital image restoration into a Bayesian framework, particularly, the use of a new half-quadratic function is proposed which performance is satisfactory compared with respect to some other functions in existing literature. The bayesian methodology is based on the prior knowledge of some information that allows an efficient modelling of the image acquisition process. The edge preservation of objects into the image while smoothing noise is necessary in an adequate model. Thus, we use a convexity criteria given by a semi-Huber function to obtain adequate weighting of the cost functions (half-quadratic) to be minimized. The principal objective when using Bayesian methods based on the Markov Random Fields (MRF) in the context of image processing is to eliminate those effects caused by the excessive smoothness on the reconstruction process of image which are rich in contours or edges. A comparison between the new introduced scheme and other three existing schemes, for the cases of noise filtering and image deblurring, is presented. This collection of implemented methods is inspired of course on the use of MRFs such as the semi-Huber, the generalized Gaussian, the Welch, and Tukey potential functions with granularity control. The obtained results showed a satisfactory performance and the effectiveness of the proposed estimator with respect to other three estimators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []