Populus ERF85 balances xylem cell expansion and secondary cell wall formation in hybrid aspen

2021 
Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identify a novel role for the ethylene induced Populus ETHYLENE RESPONSE FACTOR ERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of ERF85 is high in phloem and cambium cells and during expansion of xylem cells, while it is low in maturing xylem tissue. Extending ERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation and growth. Expression of genes associated with plant vascular development and biosynthesis of SCW chemical components such as xylan and lignin, was downregulated in the transgenic trees. Our results suggest that ERF85 activates genes related with xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of ERF85 during wood development together with the observed phenotypes in response to ectopic ERF85 expression suggests that ERF85 functions as a switch between different phases of xylem differentiation during wood formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []