Fabrication of Air-Stable and Conductive Silk Fibroin Gels

2018 
Owing to their promising applications in flexible electronics, researchers have extensively explored flexible and conductive gels. However, these gels have unsatisfactory strength and flexibility as well as easily dry in air. Herein, a rationally designed robust regenerated silk fibroin (RSF)-based gel with significant flexibility and strength, favorable conductivity, and excellent air stability is fabricated by inducing the conformation transition of RSF from random coil to β-sheet in ionic liquid (IL)/water mixtures. We found that such RSF-based gels have a unique homogeneous network structure of RSF nanofibers, which is likely formed because of evenly distributed cross-links dominated by small-sized β-sheet domains created during the conformation transition of RSF. Although the unique homogeneous nanostructure/network contributes toward improving the mechanical properties of these gels, it also provides pathways for ionic transport to help the gels preserve high conductivity of ILs. The prepared RSF-ba...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    22
    Citations
    NaN
    KQI
    []