Influence of irradiation conditions on plasma evolution in laser-surface interaction

1993 
The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm−2 was studied by emission spectroscopy. Time‐ and space‐resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe∼10 eV and ne=1018 cm−3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get informatio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    30
    Citations
    NaN
    KQI
    []