Label-Free, Chronological and Selective Detection of Aggregation and Fibrillization of Amyloid β Protein in Serum by Microcantilever Sensor Immobilizing Cholesterol-Incorporated Liposome.

2020 
: To facilitate the early diagnosis of Alzheimer's disease and mild cognitive impairment patients, we developed a cantilever-based microsensor that immobilized liposomes of various phospholipids to detect a trace amount of amyloid β (Aβ) protein, and investigated its aggregation and fibrillization on model cell membranes in human serum. Three species of liposomes composed of different phospholipids of 1,2-dipalmtoyl-sn-glycero-3-phosphocholine (DPPC), DPPC/phosphatidyl ethanolamine and 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol having varied hydrophilic groups were applied, which showed different chronological interactions with Aβ(1-40) protein and varied sensitivities of the cantilever sensor, depending on their specific electrostatic charged conditions, hydrophilicity, and membrane fluidity. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) having short hydrophobic carbon chains confirmed to show a large interaction with Aβ(1-40) and a high sensitivity. Furthermore, the incorporation of cholesterol into DMPC was effective to selectively detect Aβ(1-40) in human serum, which effect was also checked by quartz crystal microbalance. Finally, Aβ detection of 100-pM order was expected selectively in the serum by using the developed biosensor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []