Trace element analysis of three tissues from Eurasian otters (Lutra lutra) in South Korea

2015 
Eurasian otters (Lutra lutra) are endangered worldwide, but the specific cause of their decline has not been determined. This study analyzed the concentrations of potentially toxic trace elements, including As, Cd, Pb, Hg, Se, Cu, Mn, and Zn, in the liver, kidney, and lung tissues of Eurasian otters in South Korea. There were high individual variations in the tissue concentrations of all the elements analyzed. The kidneys had the highest concentrations of Cd and Se among the three tissue groups, and the livers had the highest concentrations of Cu, Mn, Zn, and Hg. The Pb and As concentrations in the livers were not significantly different from those in the kidneys, and the lungs had the lowest concentrations of all the elements analyzed. The age-related bioaccumulation of Cd and Hg was evident in the three tissue groups, and of Se in the kidneys. The Pb concentration was higher in the livers of juveniles compared with those of adults and the Zn concentration was higher in the lungs of juveniles. There were no apparent gender differences in the concentrations of the elements analyzed among the tissue groups. The Se concentration correlated with the Hg concentration in the livers and kidneys, and with the Cd concentration in the kidneys. The Hg and Cd levels correlated in the three tissue groups. The Cu and Zn levels also correlated in the livers and kidneys. In general, the element concentrations were within the ranges reported by previous studies of this species from European countries, except for Cd and Hg, the levels of which were mostly lower than those reported previously. These findings may provide baseline information to facilitate the conservation of the Eurasian otter. To the best of our knowledge, this is the first available study of trace element concentrations in the tissues of Eurasian otters from South Korea or Asian countries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    6
    Citations
    NaN
    KQI
    []