A synthetic steroid 5α-androst-3β,5,6β-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function

2013 
Ischemic stroke is a leading cause of death worldwide, yet therapies are limited. During periods of ischemia following reperfusion in ischemic stroke, not only loss of energy supply, but a few other factors including mitochondrial dysfunction and oxidative stress also make vital contribution to neuronal injury. Here we synthesized a steroid compound 5α-androst-3β,5,6β-triol by 3 steps starting from dehydroepiandrosterone and examined its effect on mitochondrial function and oxidative stress in primary cultured cortical neurons exposed to hypoxia followed by reoxygenation. 5α-Androst-3β,5,6β-triol dose-dependently protected cortical neurons from hypoxia/reoxygenation exposure. Rates of reduction in neuronal viability, loss of mitochondrial membrane potential, disruption of ATP production and oxidative stress were ameliorated in 5α-androst-3β,5,6β-triol pretreated cultures. In summary, these results suggest that 5α-androst-3β,5,6β-triol is neuroprotective against hypoxia/reoxygenation induced neuronal injuries through mediation of mitochondrial function and oxidative stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    10
    Citations
    NaN
    KQI
    []