An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments
2004
The technical challenges and motivations for high-energy, short-pulse generation with the National Ignition Facility (NIF) and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
95
Citations
NaN
KQI