Guiding Principle to Develop Intrinsic Microcrystalline Silicon Absorber Layer For Solar Cell By Hot-Wire Cvd

2001 
We report on ways to develop device quality microcrystalline silicon (μc-Si:H) intrinsic layer with high growth rate by hot-wire chemical vapor deposition (HWCVD). With combine approach of controlling impurities and moderate H-dilution [H2/SiH4 2.5], we developed, for the first time, highly photosensitive (10 3 μc-Si:H films with high growth rate (>1 nm/s); the microstructure of the film is found to be close to amorphous phase (fc 46 ± 5%). The photosensitivity systematically decreases with fc and saturates to 10 for fc> 70%. On application of these materials in non-optimized pin [.proportional]c-Si:H solar cell structure yields 700 mV open-circuit voltage however, surprisingly low fill factor and short circuit current. The importance of reduction of oxygen impurities [O], adequate passivation of grain boundary (GB) as well as presence of inactive GB of (220) orientation to achieve efficient [.proportional]c-Si:H solar cells are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []