Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms
2021
Abstract In this study, novel Fe3C-porous carbon composites (Fe3C-C) were prepared via the pyrolysis of Fe2O3 loaded MOF-74(Zn), which could integrate both strong adsorption properties and excellent peroxymonosulfate (PMS) activating performance for the removal of bisphenol A (BPA) in water. Results indicated that the composite obtained at 1000 °C (Fe3C-C1000) exhibited optimal catalytic capability. Specifically, 0.1 mM BPA could be completely removed by 0.1 g/L Fe3C-C1000 within 10 min after the adsorption enrichment. Afterwards, the mechanism of Fe3C-C/PMS system was unveiled based on quenching tests, electron spin resonance analysis, electrochemical analysis, PMS consumption detection and solvent exchange (H2O to D2O) test. The BPA degradation pathways were also analyzed through identifying its decomposition intermediates. Results showed that the Fe3C and porous carbon constituents could activate PMS via radical and non-radical mechanisms respectively, and BPA was readily degraded through both pathways. Additionally, it was found that the Fe3C-C1000/PMS system could maintain conspicuous catalytic performance in a variety of complicated water matrices with wide pH application range and long-time use stability. This study suggests a new insight for the design and development of novel catalyst which can be used for the removal of refractory organic contaminants with high concentrations in water media.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
70
References
5
Citations
NaN
KQI