Deactivation of Supported Nickel-Based Hydrogenation Catalysts with Sulfide Ions

2019 
Kinetics of the liquid-phase hydrogenation of a multiple carbon bond is studied in an aqueous medium on supported nickel catalysts at different hydrogen pressures in the system under conditions of partly controlled deactivation of the active surface sites with sulfide ions. The pattern of deactivation of the active surface sites of Ni/SiO2 catalysts containing different amounts of the active metal on the surface with sulfide ions in water is determined. The resistance of the studied catalysts to deactivation during the reduction of diethyl maleate (DM) and propen-2-ol-1 is determined experimentally. It is shown that the catalyst is more resistant to deactivation during the hydrogenation of propen-2-ol-1; this finding is attributed to the steric factor. It is found that the hydrogen pressure in the system does not affect the deactivation pattern. Excessive pressure slightly alters the deactivation resistance of the catalyst during the hydrogenation of propen-2-ol-1. It is shown experimentally that the catalytic properties of nickel in liquid-phase hydrogenation reactions can be controlled by introducing small amounts of a catalytic poison into the system at high hydrogen pressures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    2
    Citations
    NaN
    KQI
    []