GOME Calibration and Validation Using Backscatter UV Techniques

1996 
GOME radiance, irradiance, and ozone products were validated by NASA Goddard Space Flight Center through three tasks which included, pre-launch calibration comparisons with SBUV and TOMS radiometric standards, validation of GOME Level-1 irradiance and radiance and Level 2 total ozone data products using SBUV/2 and TOMS algorithms and data, and studies of GOME data using the Goddard radiative transfer code. The prelaunch calibration using the NASA large aperture integrating sphere was checked against that provided by TPD. Agreement in the calibration constants, derived in air, between the Goddard and TPD system were better than 3%. Validation of Level-1 irradiance data included comparison of GOME and SSBUV and the UARS solar irradiances measurements. Large wavelength dependent differences, as high as 10%, were noted between GOME and the US instruments. This discrepancy has now been attributed to radiometric sensitivity changes experienced by GOME when operating in a vacuum. GOME Earth radiance data were then compared to the NOAA-14 SBUV/2 radiances. These results show that between 340 and 400 nm the differences in GOME and SBUV/2 data are less than 5% with some wavelength dependence. At wavelengths shorter than 300 nm, differences are of the order of 10% or more where the GOME radiances are larger. To test GOME DOAS retrieved total ozone values, these values were compared with ozone amounts retrieved using GOME radiances in the TOMS version-7 algorithm. The differences showed a solar zenith angle dependence ranging from 0 to 10% where the TOMS algorithm values were higher. GOME radiances below 300 nm were further validated by selecting radiances at wavelengths normally used by SBUV and processing them through the SBUV ozone profile algorithm and then compared to climatological values. The GOME ozone profiles ranged from 10-30% lower over altitude compared to climatological values. This is consistent with the offsets detected in the SBUV/2 radiance comparisons at wavelengths shorter than 300 nm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []