Simulating the spectral response of quantum dot-in-well infrared photodetectors from eight band k.p method

2014 
Conduction band energy levels in quantum-dot-in-a-well structures are computed by eight band k.p method (Burt-Foreman Hamiltonian) using finite element software. Optical absorption spectrum due to intersubband transitions is simulated using Fermi golden rule. The use of contact pair boundary condition in strain calculation and criteria for choosing band mixing parameter (Ep) to avoid the spurious solutions are examined in this paper. The simulated intersubband optical absorption spectrum of different structures reported in the literature is in close agreement with the experimentally measured photoconductive absorption region and shows that the method can be used as an effective modeling for quick design of the heterostructures based infrared photodetectors for various wavelengths.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []