A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid

2019 
Multi-enzyme cascade reactions capture the essence of nature’s efficiency by increasing the productivity of a process. Here we describe one such three-enzyme cascade for the synthesis of 6-hydroxyhexanoic acid. Whole cells of Escherichia coli co-expressing an alcohol dehydrogenase and a Baeyer-Villiger monooxygenase (CHMO) for internal cofactor regeneration were used without the supply of external NADPH or NADP⁺. The product inhibition caused by the e-caprolactone formed by the CHMO was overcome by the use of lipase CAL-B for in situ conversion into 6-hydroxyhexanoic acid. A stirred tank reactor under fed-batch mode was chosen for efficient catalysis. By using this setup, a product titre of >20 g L⁻¹ was achieved in a 500 mL scale with an isolated yield of 81% 6-hydroxyhexanoic acid.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    16
    Citations
    NaN
    KQI
    []