Conformation search across multiple-level potential-energy- surfaces (CSAMP): A strategy for accurate prediction of protein-ligand binding structures

2019 
Accurate protein binding structure determination presents a great challenge to both experiment and theory. Here, in this work, we propose a new DOX protocol which combines the ensemble molecular Docking as the coarse-level, structure Optimization with the semiempirical quantum mechanics methods as the medium level, and the eXtended ONIOM (XO) calculations as the fine level. The fundamental of the DOX protocol relies on the Conformation Search Across Multiple-level Potential-energy surfaces (CSAMP) strategy, where the conformation spaces of a funnel-like structure are searched from the coarse level with hundreds of candidates to the medium level with around 10 top candidates to the fine level with the final top 1 or 2 binding modes. An in-depth test for the protocol set up against 28 crystallographic data consisting of HMGR-statins, SDase-inhibitors, 3HNRase-inhibitors, and NA-inhibitors yielded a satisfactory result with ∼0.5 A root-mean-square deviations (RMSDs) on geometries and ∼0.8 kcal/mol absolute e...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []