Multi-omic analysis of the effects of low frequency ventilation during cardiopulmonary bypass surgery
2020
Abstract Background Heart surgery with cardio-pulmonary bypass (CPB) is associated with lung ischemia leading to injury and inflammation. It has been suggested this is a result of the lungs being kept deflated throughout the duration of CPB. Low frequency ventilation (LFV) during CPB has been proposed to reduce lung dysfunction. Methods We used a semi-biased multi-omic approach to analyse lung biopsies taken before and after CPB from 37 patients undergoing coronary artery bypass surgery randomised to both lungs left collapsed or using LFV for the duration of CPB. We also examined inflammatory and oxidative stress markers from blood samples from the same patients. Results 30 genes were induced when the lungs were left collapsed and 80 by LFV. Post-surgery 26 genes were significantly higher in the LFV vs. lungs left collapsed, including genes associated with inflammation (e.g. IL6 and IL8) and hypoxia/ischemia (e.g. HIF1A, IER3 and FOS). Relatively few changes in protein levels were detected, perhaps reflecting the early time point or the importance of post-translational modifications. However, pathway analysis of proteomic data indicated that LFV was associated with increased "cellular component morphogenesis" and a decrease in "blood circulation". Lipidomic analysis did not identify any lipids significantly altered by either intervention. Discussion Taken together these data indicate the keeping both lungs collapsed during CPB significantly induces lung damage, oxidative stress and inflammation. LFV during CPB increases these deleterious effects, potentially through prolonged surgery time, further decreasing blood flow to the lungs and enhancing hypoxia/ischemia.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
0
Citations
NaN
KQI