Superconducting energy gap and normal-state conductivity of a single-domain YBa2Cu3O7 crystal.

1990 
Using polarized reflectivity measurements of single domain crystals, we are able to distinguish chain and plane contributions to the infrared conductivity of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7}. A substantial chain contribution to {sigma}({omega}) persisting to low frequency and temperature is observed. For the intrinsic conductivity of the CuO{sub 2} planes a superconducting energy gap of 500 cm{sup {minus}1} (2{Delta}/k{Tc} {approx equal} 8) is evident in the infrared data, while the normal state conductivity drops much more slowly with {omega} than the ordinary Drude form, and can be described in terms of a scattering rate {Dirac h}/{tau}* {approximately} kT + {Dirac h}{omega} at low frequency. The former result (2{Delta}/k{Tc} {approx equal} 8) suggests substantial suppression of {Tc}; the latter, that Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} is not ordinary Fermi liquid. 26 refs., 4 figs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    267
    Citations
    NaN
    KQI
    []