Temperature-dependent fiber optic hydrogen gas sensor response characteristics

2006 
Dynamic response characteristics of silica fiber long-period grating with a modified cladding, composed of ∼10-100 nm nanoparticle palladium oxides thin film material prepared by a magnetron sputtering technique, have been investigated at several elevated temperatures with a 2%H2/98%N 2 mixing gas concentration. The fiber cladding modified grating, without cladding chemical etching process, demonstrates 540 pm per 1% H 2 sensitivity, a better than 1sec response times at 160 o C, respectively. The thermal responses of the prototype have demonstrated increased dynamic wavelength shift while reducing response time simultaneously. The observed thermal dependence of the prototype could be attributed to a combined effect of thermal dependent hydrogen atoms diffusion rate and hydrogen atoms solubility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []