Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities

1997 
Detailed studies of electroluminescent devices made from single-layer doped polymer blend thin films having bipolar carrier transport abilities are presented. The active organic layer consists of the hole-transport polymer poly(N-vinylcarbazole) (PVK) containing dispersed electron-transport molecules, as well as different fluorescent small molecules or polymers as emitting centers to vary the emission color. Both the photoluminescence and electroluminescence (EL) properties are extensively studied. In photoluminescence, very efficient transfer of energy can occur from the host to very dilute (/spl sim/1 wt.%) amounts of emitting materials. When covered with a metal layer, the intensity of photoluminescence from blend thin films was found to be dependent on the type of metal coverage. The optical and electrical properties of materials and devices were systematically studied to understand the operating mechanisms and to optimize the devices. In EL, excitons appear to be formed at doped emitting centers, rather than in the host. We show that in an optimized device, a relatively high external quantum efficiency (>1%, backside emission only) and a low operating voltage (<10 V for over 100 cd/m/sup 2/) can be easily achieved by this class of devices. It was also found air-stable Ag is as good as reactive Mg-Ag alloy for the cathode contact in devices using PVK containing dispersed electron-transport oxadiazole molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    177
    Citations
    NaN
    KQI
    []