Photocatalytic inactivation of dual- and mono-species biofilms by immobilized TiO2.

2021 
Abstract Biofilms formed by different bacterial species are likely to play key roles in photocatalytic resistance. This study aims to evaluate the efficacy of a photocatalytic immobilized nanotube system (TiO2-NT) (IS) and suspended nanoparticles (TiO2-NP) (SS) against mono- and dual-species biofilms developed by Gram-negative and Gram-positive strains. Two main factors were corroborated to significantly affect the biofilm resistance during photocatalytic inactivation, i.e., the biofilm-growth conditions and biofilm-forming surfaces. Gram-positive bacteria showed great photosensitivity when forming dual-species biofilms in comparison with the Gram-positive bacteria in single communities. When grown onto TiO2-NT (IS) surfaces for immobilized photocatalytic systems, mono- and dual-species biofilms did not exhibit differences in photocatalytic inactivation according to kinetic constant values (p > 0.05) but led to a reduction of ca. 3–4 log10. However, TiO2-NT (IS) surfaces did affect biofilm colonization as the growth of mono-species biofilms of Gram-negative and Gram-positive bacteria is significantly (p ≤ 0.05) favored compared to co-culturing; although, the photocatalytic inactivation rate did not show initial bacterial concentration dependence. The biofilm growth surface (which depends on the photocatalytic configuration) also favored resistance of mono-species biofilms of Gram-positive bacteria compared to that of Gram-negative in immobilized photocatalytic systems, but opposite behavior was confirmed with suspended TiO2 (p ≤ 0.05). Successful efficacy of immobilized TiO2 for inactivation of mono- and dual-species biofilms was accomplished, making it feasible to transfer this technology into real scenarios in water treatment and food processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []