Highly efficient solid-state distributed feedback dye laser based on polymer-filled nanoporous glass composite excited by a diode-pumped solid-state Nd:LSB microlaser.

2015 
Realization of a compact, robust, highly stable, and efficient solid-state distributed feedback (DFB) dye laser based on pyrromethene 580-doped modified poly-(methyl methacrylate) embedded into nanoporous glass host is reported. A diode-pumped solid-state STA01SH-500 Nd:LSB microlaser (λ=532  nm; τ0.5∼0.5  ns; EP≤80  μJ; f≤500  Hz) is used as a pump source. When pumped well above threshold, a DFB laser emits a train of ultrashort pulses (τ≤1  ns; τ0.5<0.5  ns; Δλ0.5≤0.01  nm), while at excitation intensities not far from threshold, single transform-limited picosecond pulses (τ0.5≤40  ps; τ0.5Δν0.5∼0.3), tunable from 541 to 598 nm, are generated. The DFB lasing efficiency reaches ∼60% upon an energy stability of ∼1.4% and an overall service life of the active element of ∼9×107 laser shots. More than an order of magnitude increase in the temperature stability of a lasing wavelength as compared with ethanol solutions of laser dyes is practically demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    9
    Citations
    NaN
    KQI
    []