Improving shear strength of bolted joints in pultruded glass fiber reinforced polymer composites using carbon nanotubes
2017
The structural design of the bolted fiber reinforced polymer elements is typically governed by the capacity of the joint rather than the fiber reinforced polymer member, while the joint capacity is typically governed by the shear strength of the fiber reinforced polymer. Here, the possibility of improving the shear strength of bolted joints is investigated in the unidirectional glass fiber reinforced polymer plates by incorporating the multiwalled carbon nanotubes during glass fiber reinforced polymer fabrication. Glass fiber reinforced polymer double-shear bolted lap joints were fabricated using up to 1.0 wt% multiwalled carbon nanotubes–-epoxy nanocomposites. Finite element modeling using multicontinuum theory and element deletion techniques was performed to explain the joint behavior. The experimental investigations show that incorporating multiwalled carbon nanotubes improved the shear strength, ductility, and energy absorption significantly. Microstructural analysis proves that a chemical reaction be...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
6
Citations
NaN
KQI