A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO 2 capture and electrochemical applications

2019 
A highly pyridinic N-doped carbon with total N-species of ~ 15.5 at.% and surface area of ~ 1100 m2/g was obtained from marine biowaste, Enteromorpha prolifera, via hydrothermal carbonization and a mild KOH activation, using melamine as nitrogen source. This offers a simple pathway for large-scale synthesis of N-doped carbon with partial spheres verified from X-ray photoelectron spectroscopy and scanning electron microscopy, showing great perspective in multifunctional activities for carbon capture, oxygen reduction reaction, and supercapacitor. The carbon shows CO2 uptake of ~ 3 mmol/g under ambient conditions with isosteric heat of adsorption up to 40 kJ/mol, in addition to a large capacitance of 214 F/g at 0.5 A/g in 6 M KOH as electrode for supercapacitor. The supercapacitor exhibits superior cycling durability of 98% retention at 2 A/g after 10,000 cycles. Furthermore, the carbon as catalyst also exhibits good stability and resistance to methanol crossover as compared to commercial Pt/C catalyst, followed with a dominant 4e− transfer process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    14
    Citations
    NaN
    KQI
    []