Tumor-Induced Tolerance and Immune Suppression Depend on the C/EBPβ Transcription Factor

2010 
Summary Tumor growth is associated with a profound alteration in myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). We showed that among factors produced by various experimental tumors, the cytokines GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of CD8 + T cells and allow long term acceptance of pancreatic islet allografts. Cytokines inducing MDSCs acted on a common molecular pathway and the immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on the C/EBPβ transcription factor. Adoptive transfer of tumor antigen-specific CD8 + T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBPβ in the myeloid compartment, suggesting that C/EBPβ is a critical regulator of the immunosuppressive environment created by growing cancers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    646
    Citations
    NaN
    KQI
    []