Phylogenetic relationships of the conoidean snails (Gastropoda: Caenogastropoda) based on mitochondrial genomes
2018
Abstract With more than 5,000 species, Conoidea is one of the most diversified superfamilies of Gastropoda. Recently, the family-level classification of these venomous predator snails has undergone substantial changes, on the basis of a phylogenetic tree reconstructed combining partial mitochondrial and nuclear gene sequences, and up to 16 families are now recognized. However, phylogenetic relationships among these families remain largely unresolved. Here, we sequenced 20 complete or nearly complete mitochondrial (mt) genomes, which were combined with mt genomes available in GenBank to construct a dataset that included representatives of 80% of the known families, although for some we had only one species or genus as representative. Most of the sequenced conoidean mt genomes shared a constant genome organization, and observed rearrangements were limited exclusively to tRNA genes in a few lineages. Phylogenetic trees were reconstructed using probabilistic methods. Two main monophyletic groups, termed “Clade A” and “Clade B”, were recovered with strong support within a monophyletic Conoidea. Clade A (including families Clavatulidae, Horaiclavidae, Turridae s.s ., Terebridae, Drilliidae, Pseudomelatomidae, and Cochlespiridae) was composed of four main lineages, one of which was additionally supported by a rearrangement in the gene order. Clade B (including families Conidae, Borsoniidae, Clathurellidae, Mangeliidae, Raphitomidae, and Mitromorphidae) was composed of five main lineages. The reconstructed phylogeny rejected the monophyly of Clavatulidae, Horaiclavidae, Turridae, Pseudomelatomidae, and Conidae, indicating that several of the currently accepted families may be ill-defined. The reconstructed tree also revealed new phylogenetic positions for genera characterized as tentative ( Gemmuloborsonia , Lucerapex , and Leucosyrinx ), enigmatic ( Marshallena ) or challenging to place ( Fusiturris ), which will potentially impact the classification of the Conoidea.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
68
References
11
Citations
NaN
KQI