Hypoxia-induced apoptosis and mitochondrial dysfunction in chondrocytes arising from CREB phosphorylation reduction.
2016
Chondrocytes, which are embedded within the growthplate or the intervertebral disc, are sensitive to environmental stresses, such as inflammation and hypoxia. However, little is known about the molecular signaling pathways underlying hypoxia-induced mitochondrial dysfunction and apoptosis in chondrocytes. We first examined the apoptosis, caspase-3 activity, and apoptosis-associated markers in human chondrocyte cell line C28/I2 under normoxia or hypoxia. We then investigated mitochondrial dysfunction and the activation of cyclic adenosine monophosphate response elementbinding protein (CREB) signaling in the same human chondrocyte cell line. Our results indicated that hypoxia induced apoptosis and reduced CREB phosphorylation in chondrocytes. Upregulated mitochondrial superoxide and reactive oxygen species levels, and reduced mitochondrial membrane potential and complex IV activity were observed in hypoxia-treated C28/I2 cells. In conclusion, the present study confirmed reduced CREB phosphorylation, apoptosis induction, and mitochondrial dysfunction in the hypoxia-treated chondrocyte
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
1
Citations
NaN
KQI