Possible evidence for Suris tetrons in photoluminescence spectra of n-doped (Cd,Mn)Te quantum wells

2013 
The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (~10^{11} cm^{-2}), i.e., between the exciton-trion- and the Fermi-Sea range, are so far poorly understood. We report on an approach to bridge this gap by a magneto-photoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasi-particles when attaining different final states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []