The Impact of Three New Quaternary Sulfides on the Current Predictive Tools for Structure and Composition of Diamond-Like Materials

2013 
Abstract Iron-containing diamond-like materials Ag 2 FeSiS 4 , Li 2 FeSnS 4 , and Li 2 FeGeS 4 were synthesized for the first time via high-temperature, solid-state synthesis and found to adopt the wurtz–kesterite structure, crystallizing in the noncentrosymmetric space group Pn . These materials are considered in the broader context of design principles for new cubic- and hexagonal-derived diamond-like materials. All three of these new compounds violate Pauling’s radius ratio rule and Pfitzner’s tetrahedral volume theory. An evaluation of the adherence of over 40 published quaternary diamond-like structures to Pauling’s radius ratio rule and Pfitzner’s tetrahedral volume theory reveals that tetrahedral structures can often be generated even though these ideals are violated. To assess the radius ratios in diamond-like structures, an appropriate radii set must be selected. Accordingly, five radii sets have been investigated for accuracy in predicting metal–sulfur bond distances in diamond-like materials. Furthermore, a crystal radius of 1.63 A for four-coordinate S 2− has been calculated using the metal–sulfur bond lengths of quaternary diamond-like materials and is proposed as an addition to the popular Shannon radii set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    29
    Citations
    NaN
    KQI
    []