Ultrathin Shell Layers Dramatically Influence Polymer Nanoparticle Surface Mobility

2018 
Advances in nanoparticle synthesis, self-assembly, and surface coating or patterning have enabled a diverse array of applications ranging from photonic and phononic crystal fabrication to drug delivery vehicles. One of the key obstacles restricting its potential is structural and thermal stability. The presence of a glass transition can facilitate deformation within nanoparticles, thus resulting in a significant alteration in structure and performance. Recently, we detected a glassy-state transition within individual polystyrene nanoparticles and related its origin to the presence of a surface layer with enhanced dynamics compared to the bulk. The presence of this mobile layer could have a dramatic impact on the thermal stability of polymer nanoparticles. Here, we demonstrate how the addition of a shell layer, as thin as a single polymer chain, atop the nanoparticles could completely eliminate any evidence of enhanced mobility at the surface of polystyrene nanoparticles. The ultrathin polymer shell layers...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    9
    Citations
    NaN
    KQI
    []