A Multivariate Forecasting Model for the COVID-19 Hospital Census Based on Local Infection Incidence

2021 
COVID-19 has been one of the most serious global health crises in world history. During the pandemic, healthcare systems require accurate forecasts for key resources to guide preparation for patient surges. Fore-casting the COVID-19 hospital census is among the most important planning decisions to ensure adequate staffing, number of beds, intensive care units, and vital equipment. In the literature, only a few papers have approached this problem from a multivariate time-series approach incorporating leading indicators for the hospital census. In this paper, we propose to use a leading indicator, the local COVID-19 infection incidence, together with the COVID-19 hospital census in a multivariate framework using a Vector Error Correction model (VECM) and aim to forecast the COVID-19 hospital census for the next 7 days. The model is also applied to produce scenario-based 60-day forecasts based on different trajectories of the pandemic. With several hypothesis tests and model diagnostics, we confirm that the two time-series have a cointegration relationship, which serves as an important predictor. Other diagnostics demonstrate the goodness-of-fit of the model. Using time-series cross-validation, we can estimate the out-of-sample Mean Absolute Percentage Error (MAPE). The model has a median MAPE of 5.9%, which is lower than the 6.6% median MAPE from a univariate Autoregressive Integrated Moving Average model. In the application of scenario-based long-term forecasting, future census exhibits concave trajectories with peaks lagging 2-3 weeks later than the peak infection incidence. Our findings show that the local COVID-19 infection incidence can be successfully in-corporated into a VECM with the COVID-19 hospital census to improve upon existing forecast models, and to deliver accurate short-term forecasts and realistic scenario-based long-term trajectories to help healthcare systems leaders in their decision making. Author summaryDuring the COVID-19 pandemic, healthcare systems need to have adequate resources to accommodate demand from COVID-19 cases. One of the most important metrics for planning is the COVID-19 hospital census. Only a few papers make use of leading indicators within multivariate time-series models for this problem. We incorporated a leading indicator, the local COVID-19 infection incidence, together with the COVID-19 hospital census in a multivariate framework called the Vector Error Correction model to make 7-day-ahead forecasts. This model is also applied to produce 60-day scenario forecasts based on different trajectories of the pandemic. We find that the two time-series have a stable long-run relationship. The model has a good fit to the data and good forecast performance in comparison with a more traditional model using the census data alone. When applied to different 60-day scenarios of the pandemic, the census forecasts show concave trajectories that peak 2-3 weeks later than the infection incidence. Our paper presents this new model for accurate short-term forecasts and realistic scenario-based long-term forecasts of the COVID-19 hospital census to help healthcare systems in their decision making. Our findings suggest using the local COVID-19 infection incidence data can improve and extend more traditional forecasting models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []