Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells

2019 
Abstract Nucleus-targeting drug delivery systems (NTDDs) deliver chemotherapeutic agents to nuclei in order to improve the efficacy of anti-tumour therapy. Histone H1 (H1) plays a key role in establishing and maintaining higher order chromatin structures and could bind to cell membranes. In the present study, we selected H1 as a target to prepare a novel H1-mediated NTDD. Low molecular weight heparin (LMHP) and doxorubicin (DOX) were combined to form LMHP-DOX. Then, a novel NTDD consisting of LMHP-DOX nanoparticles (LMHP-DOX NPs) was prepared by self-assembly. The characteristics of LMHP-DOX and LMHP-DOX NPs were investigated. Histone H1 high-expressive prostate cancer PC-3M cell line was selected as the cell model. Cellular uptake, and the in vitro and in vivo anti-tumour activity of LMHP-DOX NPs were evaluated on H1 high-expressive human prostate cancer PC-3M cells. Our results indicated that intact LMHP-DOX NPs mediated by H1 could be absorbed by H1 high-expressive PC-3M cells, escape from the lysosomes to the cytoplasm, and localize in the perinuclear region via H1-mediated, whereby DOX could directly enter the cell nucleus and quickly increase the concentration of DOX in the nuclei of H1 high-expressive PC-3M cells to enhance the apoptotic activity of cancer cells. The anti-coagulant activity of LMHP-DOX NPs was almost completely diminished in rat blood compared with that of LMHP, indicating the safety of LMHP-DOX NPs. Compared to traditional NTDD strategies, LMHP-DOX NPs avoid the complicated modification of nucleus-targeting ligands and provide a compelling solution for the substantially enhanced nuclear uptake of chemotherapeutic agents for the development of more intelligent NTDDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    4
    Citations
    NaN
    KQI
    []