Ship-Bank Interaction of a Large Tanker and Related Control Problems

2013 
The objective of this work is to establish a synthesis between modern methodology in the field of ship maneuvering and control theory using the example of hydrodynamic ship-bank interactions for a large tanker. Evolving technologies have paved the way for developing increasingly sophisticated modeling techniques to study ship flows. These tecnologies have made it possible to resemble Planar Motion Mechanism (PMM) tests in numerical simulations using Reynolds-averaged Navier-Stokes (RANS) equations. These advances give way for the numerical determination of hydrodynamic derivatives as present in the maneuvering equations. This methodology is adopted in the present investigation to obtain these coefficients for various separation distances to a vertical wall. Likewise, control theory has experienced vital progress enabling engineers to apply elaborate control policies in their systems. Special attention has been payed to the distinct discipline of optimal control theory and the family of Linear Quadratic (LQ) regulators. Among the popular class of conventional Proportional-Integral-Derivative (PID) controllers rather heuristic design procedures are applied; appealing to the practitioners but might not be suitable for special applications. The work presented investigates the suitablity of deriving hydrod-namic properties by means of Virtual Planar Motion Mechanism (VPMM) tests for the KVLCC2 tanker travelling at various distances to a vertical wall of infinite depth. In subsequent maneuvering simulations the performance of the introduced controllers is discussed.Copyright © 2013 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []