Conserved quantities and regularity in fluid dynamics.

2020 
Conserved or dissipated quantities, like energy or entropy, are at the heart of the study of many classes of time-dependent PDEs in connection with fluid mechanics. This is the case, for instance, for the Euler and Navier-Stokes equations, for systems of conservation laws, and for transport equations. In all these cases, a formally conserved quantity may no longer be constant in time for a weak solution at low regularity. The delicate interplay between regularity and conservation of the respective quantity relates to renormalisation in the DiPerna-Lions theory of transport and continuity equations, and to Onsager's conjecture in the realm of ideal incompressible fluids. We will review the classical commutator methods of DiPerna-Lions and Constantin-E-Titi, and then proceed to more recent results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []