Regulatory T cells delay disease progression in Alzheimer-like pathology

2016 
Recent studies highlight the implication of innate and adaptive immunity in the pathophysiology of Alzheimer’s disease, and foster immunotherapy as a promising strategy for its treatment. Vaccines targeting amyloid-β peptide provided encouraging results in mouse models, but severe side effects attributed to T cell responses in the first clinical trial AN1792 underlined the need for better understanding adaptive immunity in Alzheimer’s disease. We previously showed that regulatory T cells critically control amyloid-β-specific CD4+ T cell responses in both physiological and pathological settings. Here, we analysed the impact of regulatory T cells on spontaneous disease progression in a murine model of Alzheimer’s disease. Early transient depletion of regulatory T cells accelerated the onset of cognitive deficits in APPPS1 mice, without altering amyloid-β deposition. Earlier cognitive impairment correlated with reduced recruitment of microglia towards amyloid deposits and altered disease-related gene expression profile. Conversely, amplification of regulatory T cells through peripheral low-dose IL-2 treatment increased numbers of plaque-associated microglia, and restored cognitive functions in APPPS1 mice. These data suggest that regulatory T cells play a beneficial role in the pathophysiology of Alzheimer’s disease, by slowing disease progression and modulating microglial response to amyloid-β deposition. Our study highlights the therapeutic potential of repurposed IL-2 for innovative immunotherapy based on modulation of regulatory T cells in Alzheimer’s disease. * Abbreviations : IFN : interferon Teffs : effector T cells Tregs : regulatory T cells
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    150
    Citations
    NaN
    KQI
    []