Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field

2015 
We study the application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. Also, at least one of the transitions to incommensurate phases at μ0Hc1~6.25 T and μ0Hc2~7 T is discontinuous, while the final quantum critical point at μ0Hc3~13 T is continuous.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    8
    Citations
    NaN
    KQI
    []