Power Control Strategies of On-Road Charging for Electric Vehicles

2016 
On-road charging systems for electric vehicles (EVs) have shown revolutionary potential in extending driving range and reducing battery capacities. The optimal equivalent load resistances to maximize receiving power of each EV according to different EV amounts are investigated. This paper introduces a typical on-road charging system with a single transmitting coil and multiple receiving coils. The equivalent circuit models according to different numbers of EVs are built. Power control strategies with regard to a varying number of EVs are then presented. Specifically, self-adaptive source voltage based on primary current detection is utilized to charge EVs, while the source can support enough EVs by providing the rated power. Otherwise, the source voltage is regulated to its maximum value and the charging energy of each EV is suggested to be controlled by adjusting the individual driving speed. A remarkable feature of the power control strategies is that the charging power for each EV is stable and can compensate for energy losses efficiently. As for urgent power demand from a particular EV with a low battery capacity, the adjustment of the corresponding load resistance is applied to alter the power distribution. The proposed technique has been verified in an experimental prototype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    7
    Citations
    NaN
    KQI
    []