Interaction of monovalent cations with acetonitrile

2009 
Solvation of monovalent cations (Me+) of alkali metalsNa+, K+, Rb+, and Cs+, coinage metalsCu+, Ag+, Au+, and p-block elements Ga+, In+, and Tl+ with acetonitrile was studied by means of ab initio calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The intermolecular interactions in the complexes Me+···CH3CN were investigated using the coupled clusters theory including single, double, and noniterative triple substitutions (CCSD(T)) in conjunction with the Pol and Pol-dk basis sets. The binding energies of these donor-acceptor complexes were estimated; taking into account the basis set superposition error, zero-point vibrations, correlation contribution, and scalar relativistic corrections. The theoretical ΔG0298 K values based on CCSD(T)/Pol and/or CCSD(T)/Pol-dk binding energies correlated well with experimental transfer Gibbs energies (from water to acetonitrile) for the series of cations. In the case of Au monocation, relativistic correction turned out to be extremely important. Composition of the complex of Ag+ and Na+ with acetonitrile was determined by using SIMS supporting both theoretical and experimental transfer Gibbs energies. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []