A New Design Technique for Sub-Nanosecond Delay and 200 V/ns Power Supply Slew-Tolerant Floating Voltage Level Shifters for GaN SMPS

2019 
Dual-output gate drivers for switched-mode power supplies require low-side reference signals to be shifted to the switch-node potential. With the move to ultra-fast switching GaN converters, there is a commercial need to achieve switch-node slew-rates exceeding 100 V/ns, however, reported level shifters do not simultaneously achieve the required power supply slew immunities and sub-ns propagation delays. This paper presents a novel design technique to achieve the first floating voltage level shifters that deliver slew-rate immunities above 100 V/ns and sub-ns delay in the same circuit. Step-by-step transistor-level design methods are presented. This technique is applied to improve a reported level shifter, and experimentally validated by fabricating this level shifter in a 180 nm high-voltage CMOS process. The final level shifter has zero static power consumption, and is shown to have a sub-nanosecond delay across the whole operating range, a 200 V/ns positive power-rail slew tolerance, and infinite negative slew tolerance. The measured propagation delay decreases from 722 ps with the floating ground at −1.5 V, to 532 ps for a floating ground of 45 V, and the power consumption is 30.3 pJ per transition at 45 V. It has a figure of merit of 0.06 ns/( $\mu $ mV), which is an $1.7\times $ improvement on the next best reported level shifter for this type of application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    9
    Citations
    NaN
    KQI
    []