Effects of species invasion on population dynamics, vital rates and life histories of the native species

2019 
Invasions occurring in natural environments provide the opportunity to study how vital rates change and life histories evolve in the presence of a competing species. In this work, we estimate differences in reproductive traits, individual growth trajectories, survival, life histories, and population dynamics between a native species living in allopatry and in sympatry with an invasive species of the same taxonomic Family. We used as a model system marble trout Salmo marmoratus (native species) and rainbow trout Oncorhynchus mykiss (non-native) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream in two sectors only a few hundred meters apart: a downstream sector in which marble trout live in sympatry with rainbow trout and a upstream sector in which marble trout live in allopatry. We used an overarching modeling approach that uses tag-recapture and genetic data (> 2,500 unique marble and rainbow trout were sampled and SNP-genotyped) to reconstruct pedigrees, test for synchrony of population dynamics, and model survival and growth while accounting for individual heterogeneity in performance. The population dynamics of the two marble trout populations and of rainbow trout were overall synchronous. We found higher prevalence of younger parents, higher mortality, and lower population density in marble trout living in sympatry with rainbow trout than in marble trout living in allopatry. There were no differences in the average individual growth trajectories between the two marble trout populations. Faster life histories of marble trout living in sympatry with rainbow trout are consistent with predictions of life-history theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    2
    Citations
    NaN
    KQI
    []