Transglutaminase 2 as a biomarker of osteoarthritis: an update

2013 
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca2+-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    23
    Citations
    NaN
    KQI
    []