Na(+)-dependent Ca2+ efflux mechanism of heart mitochondria is not a passive Ca2+/2Na+ exchanger

1994 
Net Ca2+ flux across the inner membrane of respiring heart mitochondria was evaluated under conditions in which virtually all Ca2+ movement can be attributed to the Na+/Ca2+ antiport. If this antiport promotes a passive electroneutral exchange of Ca2+ for 2Na+, the Ca2+ gradient should be equal to the square of the Na+ gradient at equilibrium. Because the mitochondrial Na+/H+ antiport equilibrates the Na+ and H+ gradients, the Ca2+ gradient should also equal the square of the H+ gradient. In a series of > 20 determinations at different matrix [Ca2+], different delta pH, and varying membrane potential, it was found that Ca2+ is transported out of the mitochondrion against gradients from 15- to 100-fold greater than the value predicted for passive electroneutral exchange. It is concluded that the observed gradients are too large to be sustained by passive Ca2+/2Na+ exchange. The observed gradients are compatible with an electrogenic Ca2+/3Na+ exchange. Alternatively another source of energy is available to support these gradients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    72
    Citations
    NaN
    KQI
    []