Experimental Investigation Into Thermal Behavior of Steam Turbine Components: Part 2—Natural Cooling of Steam Turbines and the Impact on LCF Life

2012 
Steam turbine cool-down has a significant impact on the cyclic fatigue life. A lower initial metal temperature after standstill results in a higher temperature difference to be overcome during the next start-up. Generally, lower initial metal temperatures result in higher start-up stress. In order to optimize steam turbines for cyclic operation, it is essential to fully understand natural cooling, which is especially challenging for rotors.A two-dimensional numerical procedure is described for the assessment of the thermal regime during natural cooling including the rotors, casings, valves and main pipes. The concept of the cooling calculation is to replace the steam gross buoyancy during the gland steam ingestion phase by an equivalent fluid conductivity, that gives the same thermal effect on the metal parts. The fluid equivalent conductivity is calculated based on measurements. The approach is calibrated with experimental data. Finally, the highly sensitive nature of the cyclic lifetime to the predicted cooling evolution is demonstrated. This paper is complementary with the paper [1].Copyright © 2012 by Alstom Technology Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []